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With the prevalence of robotics in daily life expected 
to only increase, there exists many opportunities for 
the optimization of robotic system performance. One 
such area is the control and path planning of unmanned 
ground vehicles (UGVs). In robotics, path planning is 
used to generate a trajectory for a robot to move from 
one point to another in a 3D-reference coordinate sys-
tem [2]. Essentially, this means creating a program to 
help the robot determine the most efficient way to trav-
el from one point to another while accounting for all 
possible variables and obstacles. Control, on the other 
hand, ensures that the robot finds the most efficient way 
to remain on the planned path to get there; it acts as a 
“real-time” calibration method [7]. In addition to opti-
mizing the performance of a UGV, developing and test-
ing control and path planning solutions for it mitigates 
potential risks associated with both safety and cost. 

This study designs a differential drive UGV in Solid-
Works™ and configure it into a Unified Robot Descrip-
tion Format (URDF) file, configure a ROS2 package 
to host all of the project contents, design a simulation 
environment in Gazebo™, use OpenCV™ to design an 
overhead camera system with which the UGV will 
communicate, implement localization, mapping, path 
planning, and motion-planning programs in Python™, 
implement control in the ros2_control framework, and 
evaluate the efficacy of UGV path planning algorithms 
[3,5]. While the use of tools such as SolidWorks™, 
MeshLab™, and Blender™ provided a unique interdisci-
plinary experience in the completion of this project, the 
primary consideration is the control and path planning 
of the UGV itself. This study considers a UGV that is 
required to traverse from a known initial position to a 
desired target location while also navigating any poten-
tial obstacles it faces. For test settings, this study saw the 

creation of obstacle course environments for the robot 
to traverse. The first major step in enabling a path plan-
ning program for the UGV was to place a camera at the 
top of the Gazebo™ simulation environment (as shown 
in Fig. 1) and connect it to OpenCV™, providing the 
UGV with a utility that functions as a satellite camera.

Fig. 1.Fig. 1. Example of output from satellite camera inside 
the Gazebo™ world once OpenCV™ is connected. 

After a given simulation environment was prepared, the 
next major component of the project was using Python™ 
and ROS2 libraries to develop programs to navigate the 
UGV. First, a localization program was developed that 
extracts the mask of all objects in the region of interest 
in the environment (as shown in Fig. 2) and then lo-
calizes the UGV through background subtraction and 
foreground extraction using an overlay image scan of 
the environment captured by the satellite camera [4].
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Fig. 2.Fig. 2. Example of a region of interest mask output gen-
erated by this project's UGV localization program.

After this, this study implemented a mapping program 
for the UGV that would graphify the map by represent-
ing juncture points as nodes and connecting routes to 
such points as edges (as shown in Fig. 3). The program 
makes this possible by simplifying the environment it-
self into a grid and running a one-pass algorithm on 
itself [6]. The one-pass algorithm scans the grid from 
left-to-right and top-to-bottom and connects nodes 
that are neighbors, including all nodes that are con-
nected diagonally.

Fig. 3.Fig. 3. Example of the map output generated after 
nodes in the graph of the simulation environment are 
connected.

Next, this study implemented 9 algorithms, including 
Dijkstra's algorithm, the A* algorithm, and A* variant 

algorithms into the UGV’s path planning program. All 
these algorithms have the purpose of finding the short-
est path in a graph, whereas the key difference between 
the Dijkstra’s algorithm and the A* algorithm (and its 
variants) is that A* uses a heuristic function that gives 
priority to nodes that are more optimal. Last in the pro-
gramming of the UGV was its motion planning pro-
gram, which is a ROS2 program that commands the 
UGV to follow coordinate points on the shortest path 
(as shown in Fig. 4) generated by the path planning 
program.

Fig. 4Fig. 4. Example of the shortest path output generated 
by the UGV's path planning program.

For control, the UGV is using a ROS2 framework 
known as ros2_control, which has allowed for a custom 
control system. This was done by creating a custom 
control file and coding in command interface objects 
for different joints of the UGV and connecting this file 
to the UGV’s URDF file. All the previously mentioned 
programs are connected to a central navigator.py pro-
gram, which is run in the Linux terminal to combine 
the many project components together; this program 
also provides a live feed, as shown in Fig. 5. 

Fig. 5. Fig. 5. Example of the live feed output displayed by the 
UGV’s navigator.py program.
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This project has already yielded a viable system for the 
control and path planning of a UGV in a simulated 
environment. An accurate map, along with a program 
that generates the most optimal path was developed for 
a ROS2 UGV. After testing, it is confirmed that the path 
the UGV follows is both feasible and efficient.

The performance of the UGV in 5 maps of increasing 
complexity (with each map tested 20 times), based on 
average values for path length (PL), computation time 
(CT), nodes visited (NV), smoothness (S), path safety 
(PS), path continuity (PC), memory usage (MU), path 
deviation (PD), and search space visited (SV) indicates 
that, of the algorithms tested, Theta* provides the most 
efficiency in the navigation of a UGV from a start point 
to a goal point, as shown below in Table 1 [1].

 

Future work includes the validation of the efficacy of 
path planning algorithms tested in simulation by test-
ing them with a TurtleBot 4 lite robot. In summary, this 
work will lead to results that will allow researchers to 
answer questions related to the validity of path plan-
ning algorithms in both simulation and the real world.
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