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Differential equation models are ubiquitous in physics 
and engineering, and solving them efficiently and ac-
curately is an important task in modern applied math-
ematics. With the growing success of AI and machine 
learning in recent years, building deep-learning solvers 
that could give solutions to these problems in real-time 
is plausible and exciting. The goal of this project was 
to develop efficient machine learning algorithms that 
could accurately predict the solution to second-order 
ordinary differential equations given the coefficients, 
the forward problem, and predict the coefficient giv-
en the solutions, the inverse problem. The differential 
equations that this project aimed to solve have the fol-
lowing form:

To clarify, for some predetermined f(x), the forward 
problem is to solve for u(x) given coefficient a(x), and 
the inverse problem is to solve for a(x) given u(x). 
For simplicity, we assumed the boundary condition 
u(0)=0=u(1).1

In order to develop machine learning algorithms to 
solve this problem, we first needed to generate data to 
train them on. To do this, we developed a finite differ-
ence solver in MATLAB to compute the solutions of the 
differential equations numerically. This solver was built 
using the centered difference approximation, allowing 
for efficient solving of a tridiagonal linear system [2].

Next, we generated many random coefficients a(x) to 
run through the difference solver to find the corre-
sponding u(x) for each one. We found that the coeffi-
cient needed to be continuous, smooth, and positive, 
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so we used the Karhunen-Loeve (K-L) Expansion [3] 
to generate many different pseudo-random coefficients.

The K-L Expansion we used is given by:

where, λk=1⁄k2π2 and ξk is a random variable. By test-
ing with trial and error, we found that using a mean 
μ=4 and pulling each ξk from the normal distribution, 
N(0,50), gave the best results for our purposes. We also 
assume the following source function:

With this all coded in MATLAB and decided, we were 
able to efficiently generate data to train our machine 
learning algorithm consisting of 5,000 pairs of coeffi-
cients a(x) and their corresponding solutions u(x), each 
with 100 steps from 0 to 1, or 99 data points in between.

Fig. 1 An example pair of coefficient a(x) (left) and 
solution u(x) (right)

Once the data was generated in pairs as shown in Fig-
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ure 1, work began on constructing neural networks in 
Python using the PyTorch library to find the map from 
a(x) to u(x).

The first task was to develop autoencoders to reduce the 
dimensions of both a(x) and u(x), so we could find the 
map between them in the new low dimension. Autoen-
coders are special kinds of neural networks designed to 
reduce the dimensions of some set of data. They consist 
of two parts: the encoder to get to the low dimension, 
and the decoder to get back to the high dimension. 
These are adjusted simultaneously by running an input 
through both and using back-propagation with a cost 
function defined as the difference between the input 
and the output of the autoencoder [1].

We found that the most effective autoencoders for both 
a and u did not use a traditional activation function but 
one simple linear transformation to the low dimension. 
The a autoencoder could reduce the coefficient from 99 
to 15 data points with 3 digits of accuracy, and the u 
autoencoder could reduce from 99 to 25 with the same 
accuracy.

Once these autoencoders were developed, we could 
work on the network to map the coefficient to solution 
(the forward map). Although we pursued training all 
autoencoders and this map together, we found that we 
had more accurate results when training both autoen-
coders and the map in the low dimension separately. 
We also found through testing on another generated 
dataset that we needed more data to train on, so we 
generated 100,000 coefficient-solution pairs.

Ultimately, by training on this new data set, we were 
able to train a network (as shown in Figure 2) so that it 
had an average mean squared error of 0.01 between the 
low-dimension solution and the network’s predicted 
solution, and an average error of 0.02 between the true 
high-dimension solution and predicted solution of the 
test data. The network consisted of 5 layers of neurons, 
first with 30, then 50, 100, 50, and 30 neurons in the 
layers and the rectified linear unit activation function 
between them.

After work on the forward problem, we did similar 
work on the inverse problem using the same generated 
data, just looking for the map from u(x) to a(x). This 

problem proved more challenging, as the coefficient 
had more features that the model needed to learn from 
fewer features in the solution u.

Fig. 2 A plot showing the error for each epoch of the 
forward network during training. 

Because of this, we found that we needed a much larger 
network, consisting of 7 layers increasing to 1000 neu-
rons, so that the model had the necessary degrees of 
freedom to accommodate such a map. We also found 
that, although it was about twice as expensive in terms 
of training time, training directly from u(x) to a(x) in 
the high dimension without using autoencoders proved 
more accurate than reducing each again. Ultimately, af-
ter completing the training  (Figure 3), we were able to 
produce an average mean squared error of 0.009 be-
tween the network’s predicted coefficient and the true 
coefficient in the inverse problem as well. The first layer 
was 99 neurons, then 200, 500, 1000, 500, 200, and 99 
neurons, and we once again used the rectified linear 
unit activation function.

In conclusion, we were able to develop algorithms that 
could predict both forward and inverse problems with 
high accuracy. This work suggests that newly built neu-
ral network architecture can efficiently obtain solutions 
to a broad variety of differential equations. Further re-
search must be conducted to test whether such neural 
networks can be used to solve the more complex partial 
differential equations; however, this project shed some 
light on attacking those problems.
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Fig. 3 A plot showing the error for each epoch of the 
inverse network during training. 

Statement of Research Advisor
Jacob Pennington has developed a reduced-order based 
neural network for solving the forward and inverse 
problems in differential equations. He independently 
generated the training data using the finite difference 
method and trained the network using the stochastic 
gradient method in Pytorch. Through numerous nu-
merical tests, it is shown that the new neural network 
is able to represent the forward and inverse maps for 
differential equations. The work sheds light for future 
investigation for the modeling of more complicated 
mathematic models using the reduced-order based 
networks.
- Dr. Junshan Lin, Department of Mathematics and Sta-
tistics, College of Sciences and Mathematics
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