
Auburn University Journal of Undergraduate Scholarship

Validation of a Fast Solvent Evaluation and 
Selection Model for Extractive Distillation
Toby Crump 1,*, Shuang Xu 2, Mario R. Eden3, Selen Cremaschi 4

Abstract
Extractive distillation is a solvent-based separation 
used to separate mixtures containing azeotropes or 
close boiling components. An external component 
(solvent) is added to the process to overcome the sep-
aration barrier. Selecting the optimal solvent for ex-
tractive distillation using solvents’ physical properties 
has been studied, but process parameters, such as the 
number of stages and reflux ratio, must also be consid-
ered when selecting a solvent. A fast solvent evaluation 
and selection (FSES) model using solvent properties 
and process parameters has been proposed for design-
ing an optimal extractive distillation process. The FSES 
model evaluates and ranks potential solvents to identi-
fy the solvent with the minimum total annualized cost 
(TAC) for the separation. This paper presents a valida-
tion study of the FSES model results for separating two 
mixtures: acetone-methanol and benzene-cyclohexane. 
The study employed rigorous process simulation and 
optimization of extractive distillation for both separa-
tions, considering five candidate solvents for each. A 
derivative-free optimization (DFO) approach was used 
to identify the optimal process design and operating 
conditions that minimize the TAC for each solvent. Sol-
vent rankings based on minimum TAC by optimization 
and predictions by the FSES model were compared. The 
FSES model and TAC-based optimization ranked the 
potential solvents for the acetone-methanol separation 
from best to worst as dimethylsulfoxide, water, ethylene 
glycol, ethanol, and 2-propanol. For the benzene-cyclo-
hexane separation, the solvents were ranked sulfolane, 
furfural, dimethyl phthalate, N-methyl-2-pyrrolidine, 
and aniline from best to worst. The TAC-based rank-
ings yielded the same order, except it ranked N-meth-
yl-2-pyrrolidine better than dimethyl phthalate. 1
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Introduction
Extractive distillation (Gerbaud et al., 2019) is a widely 
applied process for separating azeotrope or close boil-
ing mixtures. In extractive distillation, a third compo-
nent, solvent or entrainer, is added to overcome the 
separation barrier. Extractive distillation can perform 
high-purity separation for azeotrope or close boiling 
mixtures. An effective solvent facilitates the separation 
of azeotropic or close boiling mixtures by shifting the 
composition of the azeotrope. The solvent must also not 
form any new azeotropes with either mixture compo-
nent. Since adding the solvent creates a three-compo-
nent mixture, the process uses two distillation columns 
to separate the three components.

Fig. 1 gives the vapor-liquid equilibrium curves for the 
acetone-methanol mixture with and without solvents. 
In Fig. 1, the x-axis is the acetone liquid mole fraction 
in the mixture, and the y-axis is the acetone vapor mole 
fraction. The acetone-methanol mixture contains an 
azeotrope around liquid and vapor mole fractions of 0.8, 
as seen by the intersections of the dotted orange curve 
with the parity line (dashed black line). Adding water 
or dimethylsulfoxide (DMSO) to the mixture shifts the 
azeotropic composition (intersection of dashed-dotted 
blue or solid purple lines with the parity line in Fig. 1). 
This shift enables the separation of acetone and metha-
nol at high purities.

Water or DMSO can be used as solvents in extractive 
distillation to separate the acetone-methanol mixture; 
however, the separation cost or performance would dif-
fer for each solvent. For example, adding DMSO so that 
its mole fraction is 0.2 in the mixture (i.e., xDMSO=0.2) 
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shifts the acetone-methanol azeotrope to a higher com-
position than adding water with the same mole frac-
tion (i.e., xwater=0.2), which indicates that DMSO can 
facilitate a higher purity separation than water.

Fig. 1 Vapor-liquid equilibrium plot of acetone-meth-
anol mixture with different solvents. The x and y axes 
represent acetone liquid and vapor mole fractions. The 
mole fraction of the solvent, either water or DMSO, in 
the mixture is 0.2. The acetone mole fractions for the 
mixture containing a solvent have been adjusted to [0, 
1] range for generating the corresponding lines. 

Fig. 2 shows the process flow diagram for extractive 
distillation. A two-component mixture (A, B) and sol-
vent are fed separately to the first distillation column. 
The distillate of the first column contains pure product 
A, and the bottoms of the column contains component 
B and the solvent. This mixture is then separated in the 
second column to recover the solvent. The regenerated 
solvent is recycled back to the first column with make-
up solvent added to replace the small amount of solvent 
lost in the distillate streams.

Fig. 2 General extractive distillation process flow dia-
gram.

The extractive distillation process depends on the effec-
tiveness of the solvent used, and different solvents can 
lead to vastly different designs, operating conditions, 
and process costs (Shen et al., 2015). Methods for se-
lecting suitable solvents for extractive distillation and 
other solvent-based separation processes have been 
proposed. Kossack et al. (2008) proposed a rectifica-
tion body method that can calculate process proper-
ties such as minimum solvent flowrate and minimum 
energy demand for selecting the optimal solvent. But, 
the method is computationally expensive. Cignitti et al. 
(2019) proposed an optimization model to design and 
identify suitable solvents by maximizing the separation 
driving force based on the group contribution method. 
The optimum solvent was validated by rigorous process 
simulation/optimization. Shen et al. (2015) proposed a 
solvent screening method based on five solvent physi-
cal properties, such as boiling point and selectivity. Af-
ter adding weighted attributes to these properties, the 
solvents were ranked based on their ‘total score,’ and 
the ranking results were validated by process simula-
tion. However, these methods only use physical prop-
erties as their design/screening criteria without consid-
ering the effects of process properties. For example, a 
higher boiling point solvent is often preferred in sol-
vent screening due to its ease of regeneration, but this 
may result in the use of a higher grade of utility, which 
has a higher utility cost.

A fast solvent evaluation and selection (FSES) model 
(Xu et al., 2022) was developed to evaluate solvent per-
formance quickly and efficiently. The FSES model uses 
both physical properties, such as boiling point, solvent 
flowrate, and process properties, such as reboiler duty, 
column stages, and reflux ratio, to predict solvent per-
formance for extractive distillation. This study aims to 
assess the accuracy of the FSES model solvent recom-
mendations by studying the separation of two mixtures, 
acetone-methanol, and benzene-cyclohexane, using 
extractive distillation with multiple solvents. It includes 
the simulation and derivative-free optimization of the 
extractive distillation process, which were applied to 
the acetone-methanol and benzene-cyclohexane sepa-
ration tasks. The optimization studies minimized the 
total annualized cost (TAC) of the separation process 
using each solvent. The solvents were ranked based 
on their TAC, and the rankings were compared to the 
FSES model rankings. The results revealed that the 



Auburn University Journal of Undergraduate Scholarship

FSES model closely matched the rankings based on 
minimum TAC. 

Methods
Extractive Distillation Process Simulation. Fig. 3
the extractive distillation flowsheet modeled and simu-
lated using Aspen Plus (Aspen Technology, Inc., 2017). 
As seen in Fig. 3, the process includes two distillation 
columns and a recycle loop for the solvent. The azeo-
tropic mixture A-B and recycled solvent, SOLVFEED, 
are fed to the first distillation column, D1. The distillate 
of D1 contains component A, and the bottoms stream 
S1 contains the solvent and component B. The bottoms 
stream S1 is fed to the second distillation column, D2. 
The distillate of D2 contains component B, and the 
bottoms stream SOLVOUT contains the recovered sol-
vent. MAKEUP solvent is added to the recovered sol-
vent and recycled back to D1 in stream SOLVFEED.

Fig. 3 Aspen Plus simulation flowsheet for extractive 
distillation for separating a mixture containing compo-
nents A and B.

The inputs required for the simulation, as described 
in Fig. 3, were the SOLVFEED, and MIXTURE flow-
rates and temperatures into column D1, the MIXTURE 
component concentration, stream and column pres-
sures, the total number of stages for D1 and D2, the 
feed stages for D1 and D2, the SOLVEFEED feed stage 
for D1, and the MAKEUP flowrate. The values for these 
inputs were initially set using literature results and a 
systematic trial-and-error approach.

Distillation columns (D1 and D2 in Fig. 3) were mod-
eled using the RadFrac block in Aspen Plus. An ap-
propriate thermodynamic model was selected to ade-
quately model the behavior of the components in each 
separation case. Purity and recovery specifications 
were defined. Only the results of simulation runs that 

met these specifications were used to calculate TAC. 
These specifications were achieved utilizing the Design 
Spec and Vary features within Aspen Plus. The Design 
Spec feature allows for process parameters to be set to a 
certain value, while the Vary feature is utilized to auto-
matically adjust process parameters over a set range to 
achieve the design specifications. The design specifica-
tions in Design Spec must be met with adjusted process 
parameters from Vary within the set boundaries for a 
simulation to converge without errors.

Each process simulation was converged without errors 
using inputs from literature and trial-and-error before 
it could be used for optimization.

Fast Solvent Evaluation and Selection (FSES) Mod-
el. The FSES model (Xu et al., 2022) uses both physical 
properties and process parameters to predict solvent 
performance. The physical properties used include sol-
vent boiling point and flowrate (SOLVFEED in Fig. 3). 
The process parameters are the minimum number of 
stages, reboiler duty, and column reflux ratio of D1 and 
D2 (Fig. 3). The extractive distillation column D1 is di-
vided into stripping, extractive, and rectifying sections 
for calculating the minimum number of stages because 
the two-component mixture and solvent are fed sepa-
rately to D1. The stripping section is below MIXTURE 
feed of D1, the rectifying section is above SOLVENT 
feed of D1, and the extractive section occurs between 
the two feeds (Fig. 3). The Fenske equation is applied 
separately to calculate each section’s minimum number 
of stages, assuming constant relative volatility within 
each section. The sum of the resulting minimum num-
ber of stages is used as the minimum number of stages 
required for D1. The minimum reflux ratio is calcu-
lated by the intersection of the operating line and va-
por-liquid equilibrium curve. Each physical or process 
property contributes to the overall score for a solvent, 
and a simple summation method is used to rank the 
solvents, as shown in Table 1. The best solvent has the 
lowest overall score and is predicted to yield the lowest 
TAC for separating A-B mixture using extractive dis-
tillation.

In Table 1, Sp is the solvent, Vp,r is the value of property 
r for solvent p,  Scorep,r is the ranking score of property 
r for solvent p, and N is the total number of solvents 
evaluated.
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Table 1 Fast Solvent Evaluation and Selection Model 
Ranking Method for Extractive Distillation.

Derivative-Free Optimization (DFO) of Extractive  
Distillation Process. The optimization problem was 
solved using a DFO solver to identify the optimal pro-
cess design and operating parameters for each separa-
tion. The optimum was defined as the parameter values 
that minimize the TAC of the system, shown in Equa-
tions 1-3.

In Eq. (1), TAC is the total annualized cost, IC is the 
investment cost, AUC is the annualized utility cost, i 
is interest, and n is the plant life (n=5 was used in this 
model). In Eq. (2), Costj is the investment cost of equip-
ment j, and qs,j is the sizing variable for equipment j. In 
Eq. (3), Utilityj is the utility cost of equipment j, and qo,j 
is the operating variable for equipment j. The full cost 
model was developed following the method in Peters et 
al. (2003, Appendix A).

Equations 4-7 define the variable bounds on flowrates 
and column stages used in the DFO.

FS is the solvent flowrate, Nk is the number of stages in 
column k, Nk,feed is the materials feed stage of column k, 
N1,S is the solvent feed stage of the first column, and L 
and U represent the lower and upper bounds. 

Python was used to link the Aspen Plus simulations 
with the DFO solver and find the optimum process 
conditions, i.e., decision variables, that yielded the low-
est TAC. The DFO solver RBFOpt (Costa & Nannicini, 
2018; Nannicini, 2021) was used to adjust the decision 
variables, which were the solvent ratio, total stages for 
both distillation columns, the mixture feed stage for 
both columns, and the solvent stage in the first column. 
To aid in simulation convergence and determine the 
appropriate upper/lower bounds for the decision vari-
ables, an optimization structure consisting of an inner 
and outer loop (Fig. 4) was used to solve this optimiza-
tion problem.

Fig. 4 Derivative free optimization structure.

The inner loop loops between the DFO solver and the 
process simulation model for 1000 iterations. During 
these iterations, the solver searches the decision-vari-
able space defined by the bounds for the optimum. 
The inner loop output, the operating conditions that 
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yield the lowest TAC, is passed to the outer loop, which 
compares the current lowest TAC to the TAC of the 
previous inner loop results and updates the bounds if 
necessary. The bounds are updated using the decision 
variable values of the lowest TAC of the completed in-
ner loop iterations. The bounds are set so that the sol-
vent ratio is within ±0.5 of the previous best value, and 
all stage values (total number and feed locations) are 
within ±10 of the previous best values. If the TAC does 
not change from one iteration to the next, e.g., Fig. 5, 
the outer loop terminates and provides the solution 
with the lowest TAC as the optimum.

Fig. 5 Total annualized cost for acetone-methanol sep-
aration with DMSO as solvent generated using DFO 
solver using the structure shown in Fig. 4. Note. Each 
color represents a complete inner loop.

Case Studies
Acetone-Methanol Separation. The acetone-metha-
nol mixture contains a minimum-boiling azeotrope. 
This mixture can be separated using a heavy entrainer 
with acetone and methanol as the first and second col-
umns’ distillate streams. The solvents (Gerbaud et al., 
2019) considered were water, DMSO, ethanol, ethylene 
glycol, and 2-propanol. The thermodynamic package 
UNIQUAC was selected for each solvent based on the 
vapor-liquid equilibrium data. A converged process 
simulation model in Aspen Plus was the first simu-
lation model of the inner loop iterations (Fig. 4) for 
the DFO structure for each solvent. The solvents were 
ranked from lowest to highest using their minimum 
TAC (identified by the DFO). This ranking was com-
pared to the results of the FSES model.

Benzene-Cyclohexane Separation. The benzene-cy-
clohexane mixture also contains a minimum-boiling 

azeotrope and can be separated using a heavy entrainer. 
Cyclohexane is the product of the first column and ben-
zene the second column. The potential solvents for the 
acetone-methanol case study were sulfolane, N-meth-
yl-2-pyrrolidone (NMP), furfural, aniline, and dimeth-
yl phthalate. The thermodynamic package NRTL was 
used for sulfolane and furfural, and UNIFAC was used 
for NMP, dimethyl phthalate, and aniline.

Results and Discussion
Acetone-Methanol Separation. The rankings based on 
the minimum TAC were DMSO, water, ethylene glycol, 
ethanol, and 2-propanol from first to last. The process 
using the DMSO as the solvent yielded the lowest TAC, 
and 2-propanol yielded the highest. The details of the 
optimum process with the DMSO solvent are shown in 
Fig. 6. 

The TAC results of the optimization problem solution 
and FSES model scores for each solvent are listed in 
Table 2. The FSES model resulted in the same solvent 
rankings.

Fig. 6 Optimum acetone-methanol separation process 
flowsheet with DMSO as solvent. 

Table 2 Comparison of optimization and FSES model 
results for acetone-methanol separation.

Benzene-Cyclohexane Separation. The minimum 
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TACs for the benzene-cyclohexane separation pro-
cess resulted in a solvent ranking as sulfolane, furfural, 
NMP, dimethyl phthalate, and aniline from first to last. 
Sulfolane yielded the process with the lowest TAC and 
aniline the highest. The optimum separation process 
with sulfolane solvent is shown in Fig. 7. 

The TAC from optimization and FSES model scores 
for each solvent are given in Table 3. The FSES model 
yielded a similar solvent ranking but ranked dimethyl 
phthalate as a better solvent than NMP. The FSES mod-
el correctly predicts column stages of dimethyl phthal-
ate and NMP to be similar, but the high boiling point of 
dimethyl phthalate causes the discrepancy between the 
optimization and FSES model results. The high boiling 
point of dimethyl phthalate results in higher column 
temperatures, requiring a furnace. This causes the cap-
ital cost of the dimethyl phthalate system to be higher 
than the NMP system. While boiling point contributes 
to the FSES model ranking results, the method in the 
FSES model does not account for the significant cost 
effect of the high boiling point of dimethyl phthalate.

 

Fig. 7 Optimum benzene-cyclohexane separation pro-
cess flowsheet with sulfolane as solvent.

Table 3 Comparison of optimization and FSES Model 
results for benzene-cyclohexane separation.

Conclusions and Future Direction
Due to the importance of solvent selection, the FSES 
model was proposed to quickly and accurately predict 
solvent performance. This model uses both physical 
and process properties to rank solvents based on their 
potential performance. This work validates the pro-
posed FSES model predictions by completing rigorous 
process simulation and derivative-free optimization of 
multiple extractive distillation separation processes. 
After completing process simulation and optimization 
for the acetone-methanol and benzene-cyclohexane 
separations with five solvents each, the optimum pro-
cess design and operating parameters were identified 
for both separations. The optimum process designs for 
the acetone-methanol and benzene-cyclohexane sepa-
rations utilize DMSO and sulfolane as solvents. 

The FSES model correctly predicted solvent perfor-
mance for extractive distillation based on total annu-
alized cost. The optimization and FSES model yielded 
the same results for the acetone-methanol separation. 
For the benzene-cyclohexane separation, a similar sol-
vent ranking was obtained between the optimization 
and FSES models, but the FSES model ranked dimethyl 
phthalate as a better solvent than NMP. This was due 
to the high boiling point of dimethyl phthalate. While 
the solvent ranking for the benzene-cyclohexane sepa-
ration was imperfect, the FSES model ranked the two 
best solvents correctly. 

Future work will consider integrating the presented 
FSES model into extractive-distillation process synthe-
sis for either solvent selection or solvent design.
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