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Abstract
Machine learning models and neural networks are 
powerful algorithms that can be used for predicting fu-
ture joint angles in biomechanical applications.  How-
ever, their high computational demand makes near-fu-
ture prediction difficult or even impossible. As such, 
the purpose of this study was to establish a non-ma-
chine-learning baseline to future joint angle prediction 
for more complex model performance comparison. It 
was hypothesized that the use of simplistic, kinemat-
ics-based models would be beneficial for predicting 
joint angles in a near-future application due to lower 
computational demand, as long as their prediction ac-
curacies could rival that of machine learning models. 
Six kinematically-informed prediction algorithms were 
developed to understand this tradeoff between runtime 
and prediction error. The prediction models were test-
ed on the ankle flexion angle kinematic curves of nine 
individual subjects who each performed three distinct 
stair ascent trials (27 total trials). Each model’s runtime 
and prediction error was recorded and compared with 
each other and to a baseline Random Forest machine 
learning model that was trained and tested solely on 
ankle flexion angles. The results of the study indicat-
ed that kinematically-informed models had runtimes 
~50x faster than commonly used machine learning 
models (runtimes: Damped Angular Acc. model = 0.30 
ms; Linear Extrapolation model = 0.31) while simul-
taneously rivaling the prediction error of the Random 
Forest model (prediction errors, reported in ° RMSE: 
Damped Angular Acc. model = 7.49; Linear Extrapola-
tion model = 8.45; Random Forest model = 5.00). Such 
results provide the basis for inclusion of kinematical-
ly-informed algorithms in near-future joint angle pre-
diction applications.1

* Corresponding author: rzp0051@auburn.edu

Key Words: kinematics; prediction; runtime; joint angles 

Introduction
Predicted joint angle control methodology has been 
used in a wide range of biomechanical applications, in-
cluding prosthetic (Antfolk et al., 2010), robotic (Bingul 
and Ertunc, 2005), and exoskeleton control (Coker et 
al., 2021). In an exoskeleton application, such a control 
scheme allows for actuation of a wearable robotic along 
a predicted curve that seeks to track the user’s desired 
kinematics in order to increase machine-man agree-
ment and reduce metabolic cost (Agarwal and Desh-
pande, 2018). As such, machine learning and neural 
networks are powerful algorithms that have been com-
monly used in this attempt to map data recorded from 
the body (e.g., accelerations, EMG-activity, pressure 
gradients) to a desired output kinematic curve (Tack, 
2019). While previous studies have reported minimal 
prediction errors for machine-learning-based models 
used in future joint angle prediction (Chen et al., 2017; 
Huang et al., 2019; and Gautam et al., 2020), many fail 
to report the necessary runtime required to make such 
a prediction. For studies that do report computational 
demand, the runtimes are elevated such that real-time, 
near-future (~100ms) joint angle prediction becomes 
difficult or impossible with such machine learning al-
gorithms (Luo et al., 2018; Xiao et al., 2018; Hua et al., 
2019).

As such, alternative prediction methods and algorithms 
need to be considered for this application. Several stud-
ies have successfully predicted joint kinematic profiles 
using non-machine learning methods. Moissenet et 
al. (2019) developed a multiple-regression model for 
predicting lower-limb joint kinematics as a function 
of walking speed, BMI, gender and age. Rabani et al. 

1 Undergraduate Student, Department of Mechanical Engineering, Auburn University 
2 Graduate Research Assistant, Department of Mechanical Engineering, Auburn University 

3Auburn Alumni Engineering Council Endowed Associate Professor, Department of Mechanical Engineering, 
Auburn University  

PR2023_19943



Auburn University Journal of Undergraduate Scholarship

(2022) used an empirical mathematical model and 
Fourier series expansions to predict lower-limb joint 
kinematics on varying surface gradients. While these 
models are beneficial for clinical or offline use, they are 
not designed to make real-time predictions for exoskel-
eton control. For near-future kinematic prediction, it 
may be beneficial to prioritize the current kinematic 
quantities of a joint over its kinetic and neuromuscular 
quantities. To our knowledge, a near-future joint angle 
prediction algorithm that is solely a function of current 
joint kinematics has not yet been developed for the sake 
of real-time exoskeleton control. Such kinematically 
informed models would seek to use simple kinematic 
equations of motion and historical trendline extrapo-
lation to predict future joint kinematics. Due to their 
simplicity, these kinematic models would likely have a 
decreased computational demand when compared to 
machine learning performance on similar data. 

However, decreased computational demand cannot of-
ten be achieved without an increase in prediction error 
(Yao et al., 2018; Hua et al., 2019). Therefore, the pur-
pose of this study is to characterize the performance 
(prediction error and runtime) of various kinemati-
cally-informed algorithms in a near-future joint angle 
prediction application. Such an analysis will allow for 
the characterization of the trade-off between prediction 
error and runtime for such models. Additionally, the 
kinematically-informed models will be able to function 
as a baseline to which machine learning and neural 
network models will be compared to justify their use 
in time-restricted applications. The primary hypothesis 
of this study is that the kinematically-informed models 
will rival the prediction accuracy of the machine learn-
ing models while simultaneously having significantly 
lower computational demand for a near-future predic-
tion application. 

Methodology 
Participants. Nine healthy subjects (5 male, 4 female, 
age = 21.1 ± 1.6 years, height = 172.2 ± 8.3 cm, weight 
= 72.3 ± 11.1 kg) participated in the study. Each partic-
ipant was a nonpathological ambulator who reported 
no lower extremity pain or surgery in the six months 
prior to the study. The study protocol was approved 
by the Auburn University Institutional Review Board 
(IRB), and each participant provided informed consent 
prior to the study.

Experimental setup and procedure. A ten camera Vicon 
motion-capture system was used to record lower-limb 
kinematics. Retroreflective markers were placed on 
each of the subjects according to the in vivo point-clus-
ter method developed by Andriacchi et al. (1998). Sub-
jects were asked to perform three stair climb trials, 
consisting of the ascent of two consecutive seven-inch 
steps, and three level-walking trials. Musculoskeletal 
models for each trial were developed within Visual 3D 
from marker positional data filtered with a 15Hz low-
pass Butterworth filter. From this model, joint angles in 
the sagittal, frontal, and transverse planes at the ankle, 
knee, and hip were calculated. However, only ankle an-
gles in the sagittal plane (the ankle flexion angles) were 
used through the remainder of this study. 

Model Architecture
Six kinematically-informed algorithms and one ma-
chine learning algorithm were developed as joint angle 
prediction models. Each of the models were developed 
from trendline extrapolation, kinematic forecasting 
techniques, or from an existing Python (v3.9.12, Py-
thon Software Foundation; https://www.python.org/) 
library, as follows. 

Naïve forecasting. Naïve forecasting is the simplest of 
the extrapolation methods. This method uses the cur-
rent joint angle,   (t + tpred), at a given time, tpred, in the 
future. Therefore, the naïve approach is a function of 
only one recorded joint angle. The naïve approach is 
governed by Eq. (1) below:

Although a naïve prediction is merely a responsive 
replication of a previous data point, and therefore may 
not be supremely beneficial in a predictive exoskeleton 
control scheme, such a model was included in the anal-
ysis to serve as a baseline comparison for the other ki-
nematically-informed models. 

Linear extrapolation. The linear extrapolation method 
is a function of two consecutive joint angle data points, 
seeking to define a linear curve through the historical 
data. Future joint angles are computed by evaluating 
this linear curve at a desired future time as defined by 
Eq. (2).
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Deriving the slope of the linear curve effectively yields 
an angular velocity, ωi,avg, of the joint. As such, the 
linear extrapolation method is identical to a kinemat-
ic approach assuming an average angular velocity and 
constant angular acceleration, as is outlined by Eq. (3) 
and (4).

...where:

Quadratic extrapolation. The quadratic extrapolation 
method seeks to fit a quadratic curve, fquad(x) (governed 
by coefficients a, b, and c), to the previous three record-
ed angular data points by. Predicted joint angles are 
computed by evaluating this quadratic-fit curve at the 
desired future time, as demonstrated by Eq. (5) below.

Cubic extrapolation. The cubic extrapolation method is 
the final extrapolation method deployed in this study. 
The cubic extrapolation method uses the four previous-
ly recorded joint angle data points to develop a polyno-
mial cubic curve, fcubic (x) (governed by coefficients a, b, 
c, and d). By evaluating this resulting cubic-fit curve at 
a future time, a joint angle prediction can be reported, 
as is indicated by Eq. (6).

Angular acceleration informed. The angular accelera-
tion approach seeks to expand upon the linear extrap-
olation method, additionally including the effects of 
angular acceleration on the prediction. Eq. (7) below 
indicates the development of an average angular accel-
eration value, α_(i,avg), of three joint angles, similar to 
how Eq. (4) outlines the calculation of an average angu-
lar velocity from current and past joint angles.

The calculation of this average angular acceleration al-
lows for the use of a kinematic relationship to predict 
future joint angles, as is defined by Eq. (8).

Damped angular acceleration effect.  The damped angu-

lar acceleration approach seeks to minimize the effect 
of potential noise in the system, as angular accelera-
tions are not reported directly but are rather twice-de-
rived from marker positional data. In the hope of still 
including some effect of the joint’s angular acceleration 
on the predicted value, a scaling factor, β, was included 
on the acceleration term of the kinematic relationship. 
This scaling factor alters the effect of the acceleration 
in the equation and is constrained such that       0<β<1. 
Therefore, this approach is a function of three histori-
cal kinematic data points and a variable damping coef-
ficient. The damped angular acceleration approach is 
defined by Eq. (9) below.

Were β=0, the resulting equation would mirror that of 
the linear extrapolation method and Eq. (3). Were β=1, 
the resulting representation would be identical to the 
general angular acceleration approach outlined in Eq. 
(8). This damped approach allows for the exploration 
of effective β values that provide the benefit of includ-
ing acceleration data for prediction during changes of 
direction while neglecting the effects of positional data 
noise. The effect of the scaling factor on model perfor-
mance was explored by indexing β on the range 0 < β 
<1 at an interval of 0.001. Model performance was then 
compared to the varied values of β to understand the 
optimal sizing of the scaling factor for this dataset.

Random Forest. Finally, a Random Forest (RF) model 
was developed to serve as the baseline machine learn-
ing model for comparison. An RF algorithm is a su-
pervised machine learning algorithm that consists of 
several branches of decision trees and can be used for 
both classification and regression applications. The RF 
regression model developed for this study was tested 
and trained on the ankle flexion angle curves for lev-
el-walking that were collected prior to this study. The 
RF model was developed using the Scikit-learn Python 
module, using the default hyperparameters (for ex-
ample, n_estimators = 100, max_depth = None).  Al-
though the RF model used in this study was trained 
and tested on a different dataset than the kinematical-
ly-informed models, it is expected that the difference 
in performance of the RF model from level-walking to 
stair-ascent would be minimal for an initial compari-
son. Ensemble RF regression model source code and 
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documentation is accessible via https://scikit-learn.
org/.

Model Performance Evaluation
Each of the six kinematically-informed models was 
used for joint angle prediction for each stair ascent 
trial. Model performance was evaluated on all three 
trials for each subject, a total of 27 stair ascent trials.  
For each trial, each model predicted the sagittal ankle 
angles for a single gait cycle of the leading limb at a 
tpred=100ms into the future. The leading limb was de-
fined as the limb that was in stance phase on the initial 
step, and a single gait cycle was defined from heel strike 
of the leading limb on the initial step to heel strike of 
the leading limb on the top step. The models incorpo-
rated varying sliding window sizes, depending on the 
number of frames required by each model to make a 
prediction. Sliding window sizes are documented be-
low in Table 1. Predictions were computed for every 
measured angle.

Table 1 Sliding window sizes for each kinematically-in-
formed prediction model. Data collected at 120 Hz 
(8.33 ms per frame).

Each model was developed within the Python pro-
gramming language on a Lenovo ThinkPad x270 (Le-
novo Group Limited; Hong Kong) with an Intel Core 
i5-7200U CPU (Intel Corporation; Santa Clara, CA). 
Models were tested on each subject’s stair climb ankle 
angle kinematics in an offline analysis.  Model perfor-
mance was evaluated by comparing the predicted joint 
angles to the ankle angles measured by the motion-cap-
ture system using a root-mean-square error (RMSE) 
metric. Additionally, the computational runtime for 
each of the models was recorded. RF prediction accura-
cies and runtimes discussed in this paper are indicative 
of testing performance only and not training time or 
training error. A repeated measures ANOVA followed 

by post-hoc paired t-tests were performed to compare 
the differences between each of the models’ prediction 
errors and runtimes.

Results
ANOVA results indicated strong statistically signif-
icant differences between each of the models’ predic-
tion errors. Prediction errors are plotted by model type 
in comparison with the RF model in Figure 1, while 
prediction errors are presented numerically in Table 2 
below for each of the models. The top performing kine-
matically-informed models demonstrated comparable 
prediction errors to that of the RF model (Damped An-
gular Acceleration = 7.49° RMSE; Linear Extrapolation 
= 8.45° RMSE; RF model = 5.0° RMSE).

Figure 1 Average prediction errors (reported in 
°RMSE) of individual models over all stair ascent tri-
als. Error bars denote one standard deviation from the 
average. The dashed-horizontal line denotes RF model 
prediction error. Unless indicated with n.s. (no statisti-
cal difference), all models exhibited statistically signifi-
cant differences in their prediction errors.

Table 2 Prediction errors and standard deviations for 
each kinematically-informed model.

Additionally, the computational demand of each pre-
diction model is presented in Figure 2.
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Figure 2 Average runtimes (reported in milliseconds) 
of each prediction model. Machine learning models 
trained and tested on similar datasets reported run-
times of ~30ms. Unless indicated with n.s. (no statisti-
cal difference), all models exhibited statistically signifi-
cant differences in their computational demand.

Finally, the effect of scaling factor β on the prediction 
accuracy of the damped angular acceleration model 
is shown below in Fig. 3. For this analysis, a β=0.802 
was determined to be the most effective value for min-
imizing prediction error – unless otherwise stated, this 
value for β has been used throughout this analysis to 
represent the maximum performance that the damped 
angular acceleration model (Eq. 9) could attain for this 
dataset. 

Fig. 3 Prediction error as a function of the scaling fac-
tor (β) for the damped angular acceleration prediction 
model. A   β=0 yields the linear extrapolation model, 
while a β=1 yields the angular acceleration informed 
model.

Discussions and Conclusions
The primary hypothesis of this study was confirmed  
the kinematically-informed models had significant-
ly decreased computational demand with comparable 
prediction errors to a machine learning approach. The 
root-mean-squared errors (RMSEs) of the kinematic 
models ranged from 7.49° - 30.20°, depending on the 
model architecture. The RMSEs of the most accurate 
kinematic models (Damped Angular Acc. model = 
7.49°; Linear Extrapolation model = 8.45°) were com-
parable to the prediction error of 5.0° reported by the 
RF machine learning model. It is expected that the pre-
diction error for this RF model (which was trained and 
tested on level-walking trials) would be comparable 
to a RF model trained and tested on stair ascent trials  
subsequent studies that seek to expand upon this work 
should ensure that the datasets being used by both 
the kinematically-informed models and RF model are 
identical. Additionally, the runtime of the slowest pre-
diction model was reported as <0.5ms, which is ~50x 
faster than common machine learning models trained 
and tested on similar datasets.

Such results may provide the basis for inclusion of kine-
matically-informed prediction models in real-time an-
kle exoskeleton applications. Because of the decreased 
computational demand of these models, additional 
time can be allocated towards exoskeleton actuation to 
the desired joint angle without significantly compro-
mising prediction accuracy. Additionally, because ki-
nematically-informed models are not “trained” on spe-
cific datasets like machine learning models, they can 
be considered task agnostic. As such, kinematics-based 
models can be used in future joint angle prediction for 
varying actions without significant loss of accuracy, 
which may be beneficial for free-exploration exoskele-
ton applications that are not restricted to a single action 
in a laboratory setting.

The primary limitation of this study involves the noise 
associated with marker positional data. Developing a 
method that seeks to report acceleration more accu-
rately is critical to mitigate the effects of noise in joint 
angle prediction. Potential solutions to such a prob-
lem may include expanding the sliding window size of 
models that rely on acceleration as an input, such as 
the Angular Acceleration Informed model. Expanding 
the sliding window would allow for the development of 
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an effective acceleration that incorporates a larger set 
of datapoints, thus reducing the effects of noise in be-
tween consecutive points. In practice, a potentiometric 
goniometer or an encoder would likely be used to mea-
sure joint angles rather than retroreflective markers. In 
addition to a goniometer, aligning IMUs with respect 
to a local joint axis, as outlined by Seel et al. (2014), 
would provide a more robust value of acceleration that 
does not rely on the derivation of angular position and 
velocity.

Additionally, studies that seek to expand upon this 
study and understand the performance of kinematical-
ly-informed models in a real-time application should 
be performed. While an offline analysis of near-future 
joint angle prediction provides a fundamental under-
standing of the relative performances of each model, 
the true performance and ability of each model will 
only come during an online test that requires each 
model to make joint angle predictions in real-time. 
Such a study will further provide justification for such 
kinematically-informed models in a near-future exo-
skeleton control application.
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Nomenclature
α = angular acceleration [deg/sec/sec]
β = acceleration scaling factor [dimensionless]
i = timestep
ω = angular velocity [deg/sec]
t = time [sec]
tpred = prediction time [sec]
twindow = sliding window length [sec]
θ = measured angle [deg]
    = predicted angle [deg]
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